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From splashing to bouncing: The influence of viscosity on the impact of suspension
droplets on a solid surface
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We experimentally investigated the splashing of dense suspension droplets impacting a solid surface, extending
prior work to the regime where the viscosity of the suspending liquid becomes a significant parameter. The overall
behavior can be described by a combination of two trends. The first one is that the splashing becomes favored
when the kinetic energy of individual particles at the surface of a droplet overcomes the confinement produced
by surface tension. This is expressed by a particle-based Weber number Wep . The second is that splashing is
suppressed by increasing the viscosity of the solvent. This is expressed by the Stokes number St, which influences
the effective coefficient of restitution of colliding particles. We developed a phase diagram where the splashing
onset is delineated as a function of both Wep and St. A surprising result occurs at very small Stokes number,
where not only splashing is suppressed but also plastic deformation of the droplet. This leads to a situation where
droplets can bounce back after impact, an observation we are able to reproduce using discrete particle numerical
simulations that take into account viscous interaction between particles and elastic energy.
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I. INTRODUCTION

The study of the impact and splashing of liquid droplets
has a long history, from the early work of Worthington over a
century ago [1] to recent studies investigating the details of the
dynamic spreading and breakup process, including how it is
affected by the presence of ambient gases and by modifying the
properties of the impacted surface [2–13]. Suspending small,
solid particles inside the liquid can fundamentally change the
impact dynamics [10,14–19]. In particular, the established
criteria for the onset of splashing in pure liquids are no longer
valid and until recently it was not even clear whether the
presence of particles would increase or decrease the splashing
propensity [17]. A major surprise from recent work on
concentrated suspensions has been that many factors strongly
affecting pure liquid impact, such as substrate microstructure
or ambient gas pressure, play only a minor role, if at all [17].
The fact that the impact dynamics of concentrated suspensions
is simpler and easier to control than that of pure liquids
opens up new possibilities for material deposition applications,
including coating and additive manufacturing [20].

Before impact, the suspension droplet is confined purely
by surface tension, and the strength of this confinement is
tested when the droplet hits a solid surface. Upon impact,
this droplet can spread out, or splash through the ejection
of particles [14,17,21], or at the limit of high-impact speeds
spread out into a monolayer [18]. Because the impact causes
strong deformation on a short time scale, the non-Newtonian
behavior of the suspension is expected to play a large role [10].

In a previous publication [17], we have shown that the
global energy budget of the suspension does not influence the
onset for the splashing of the suspension droplets, but is instead
set by the energy barrier that individual particles need to cross
to escape the droplet. More precisely, the ratio between the
kinetic energy that particles obtain as a result of collisions and
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the surface energy associated with an escaping particle needs
to be large enough, which can be expressed by a particle-based
Weber number Wep = ρprpU 2/σ , where ρp is the density of
the particle, rp the particle radius, U the impact speed, and
σ the surface tension of the liquid. In the inviscid limit, the
splashing onset was found to be at Wep ≈ 14 [17].

Here, we explore with experiments and supporting sim-
ulations what happens if we increase the dissipation in
this system by changing the viscosity of the suspending
liquid. Previous studies [22–26] have shown that the effective
coefficient of restitution e is a function of the Stokes number
St = 2

9ρprpU/μ, with μ the dynamic viscosity of the liquid.
A common feature is that e drops to zero at a critical
value of the Stokes number Stc. In fully submerged systems,
particle impact on a flat surface in an ambient fluid [22] and
particle-particle collision in an ambient fluid [24] result in
Stc ≈ 10. For the case of thin liquid films the results are more
involved: Typically the critical Stokes number is lower, e.g.,
Stc ∼ 1 was reported in the case of the impact of dry particles
on a wetted surface, although it was shown later by Gollwitzer
et al. [26] that the critical Stokes number depends on the ratio
between the film thickness δ and the particle radius, where Stc
decreased with the ratio δ/rp. We will use the general notion
of the dependence of e on the Stokes number to rationalize
the influence of viscosity on the splashing onset of dense
suspension droplets. Assuming that splashing is caused by
collisions between particles, decreasing e should increase the
onset impact speed for splashing. In addition, a critical Stokes
number is expected below which splashing is suppressed
completely.

There are three possible scenarios for a suspension droplet
impacting a hard surface with speed U, as shown schematically
in Fig. 1: It can splash by ejecting particles, spread over the
surface without splashing or bounce back. Figure 2 shows
examples of this general set of behaviors. As the impact
speed increases, a splashing threshold is reached beyond which
individual particles become ejected. Comparison of the top two
rows of images demonstrates that the threshold speed increases
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FIG. 1. Schematic view of three different droplet impact scenar-
ios: particle ejection (splashing), spreading without splashing, and
bouncing.

in a nontrivial manner with solvent viscosity. At sufficiently
large impact velocity, any particle confinement due to surface
tension becomes negligible compared to inertia and frictional
particle-particle interactions. In this case the behavior is well
approximated by the limit of infinite particle-based Weber
number. This is demonstrated by the bottom row in Fig. 2,
which compares side-by-side experiment and results from a
simulation of a granular droplet without any liquid included.

Our main experimental result is the behavior of the splash-
ing threshold for increasing solvent viscosity, for which we
determined the onset values of the Stokes and particle-based
Weber numbers. In addition we have found a regime where
the suspension droplets neither splash nor spread, but instead
bounce back. The paper is organized as follows. We start
by describing the experimental methods in Sec. II and the
numerical model in Sec. III. After that, we describe in Sec. IV
the experimental observations for splashing and bouncing, and
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FIG. 2. Snapshots of suspension droplets impacting on a glass
substrate. (a)–(c) Side views, μ = 19 mPa s, rp = 362 μm; (d)–(f)
bottom views, μ = 91 mPa s, rp = 362 μm. (g) and (h) Comparison
between experiment and three-dimensional simulation at Wep → ∞
and St → ∞. (g) Adapted from [18].
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FIG. 3. Schematic view of the setup. Suspension droplets impact
the glass plate at a speed U , set by the release height h. The ejection of
particles and bouncing motion of the droplets upon impact is recorded
using two high-speed cameras.

compare the bouncing behavior of viscous suspensions with
numerical simulations. We end with a discussion in Sec. V.

II. EXPERIMENTS

We performed experiments where we impacted suspension
droplets on a glass plate, and observed their splashing
behavior using high-speed imaging (Fig. 3). The main control
parameters are the impact speed U , particle size rp, particle
density ρp, dynamic liquid viscosity μ, and liquid surface
tension σ . Below we explain in more detail how we varied
each of these parameters. The parameters can be combined
into two relevant dimensionless numbers that we defined in
the introduction, the particle-based Weber number Wep and
the Stokes number St.

The suspensions were created by first filling a syringe
with a solvent liquid, followed by carefully adding particles
and letting them sediment, while taking care that no air
bubbles were entrained. Particles were added until the liquid
was fully saturated with particles, which resulted in an
average volume packing fraction for all our experiments of
φ = 0.59 ± 0.04. For suspensions made with glycerol, we
determined the packing fraction of the resulting suspension
droplets by evaporating the liquid on a hot plate and measuring
the mass before and after evaporation. We used zirconium
dioxide (ZrO2) and soda-lime glass beads for our suspended
particles. The properties of these particles, which are a subset
of the particles used in [17], are listed in Table I.

In order to get a range in both viscosity and surface tension,
we used silicone oils and glycerol–water mixtures. The
silicone oils had viscosities in the range of 20–1055 mPa s and

TABLE I. Properties of the particles used in this study.

Particle Material Radius (μm) Density (kg/m3)

P1 Glass 76 ± 13 2520 ± 160
P2 ZrO2 138 ± 11 3840 ± 160
P3 ZrO2 362 ± 22 3930 ± 160
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a surface tension around 21 mN/m. Glycerol–water mixtures
had viscosities ranging from 1 to 1090 mPa s, and surface
tensions from 72 mN/m for pure water, decreasing down to
64 mN/m for the most viscous mixtures (99 wt% glycerol).

The impact velocity was controlled by varying the release
height h from 1 to 180 cm, giving impact velocities between
0.44 and 5.9 m/s. The droplets were created by extruding them
quasistatically from their syringe (inner diameter 4.7 mm)
using a syringe pump (Razel R99-EB) at a flow rate of the
order of 1 μL/s. The syringes had their tips cut off such that
the suspensions were extruded from a simple straight cylinder
and did not need to flow through a contracting nozzle. During
extrusion, the droplets pinched off under the influence of their
own weight, which resulted in reproducible drop volumes.
The bottom of the drops have a cylindrical shape with a
diameter equal to the syringe inner diameter because they
do not deform significantly during the extrusion, while the
top of the drops have a sharp tip as a result of the pinch-off
process [17,27].

The experiments were recorded with a Phantom V12
high-speed camera operating at a frame rate of 6200 frames/s
(camera 1 in Fig. 3). Using a 105-mm Nikkon Micro-Nikkor
lens, the typical resolution of our images was 20 μm/pixel. All
experiments were recorded with a bottom view, which was for
part of the experiments supplemented by a synchronized side
view using a second high-speed camera (camera 2 in Fig. 3).
Bottom views were used to determine the splashing onset,
as these images are the most reliable for detecting ejected
particles. Side view images, on the other hand, allowed us to
observe a bouncing motion of droplets.

III. NUMERICAL MODEL

In the simulation, we idealize the dense suspension as
a collection of elastic spheres experiencing viscous drag
due to lubrication flow in the narrow gaps between the
particles, surface tension, and particle inertia. Assuming
that physical contact between particles occurs via surface
asperities characterized by roughness lengthscale R�, the
lubrication drag between two particles in relative motion has
the form Fμ = (3π/2)(μ�Ur2

p/(s + R�))n [28]. Here �U is
the relative velocity along the line of approach in the particle
pair’s center-of-mass frame, s the separation between particle
surfaces, and n the direction along the line of approach.
Both μ and rp values are chosen in accordance with the
experimental values. We use R� = 10−2rp, corresponding
to μm-scale roughness over 100-μm-sized particles. When
particles collide so energetically that they support nonzero
overlap δ, we expect that the lubrication drag saturates at
(3π/2)(μ�Ur2

p/R�), the value corresponding to a narrow
gap at the surface roughness lengthscale. Particles in the
suspension plug are not elastically compressed initially but
are compressed by the impact process. We assume that the
elastic compression δ remains small relative to the particle
radius rp, therefore giving rise to a Hertzian contact force Fδ =
(2E/3)

√
2rpδ3/2n between neighboring compressed particles.

It was not practical to simulate the impact for the 250 GPa
Young’s modulus value associated with ZrO2 particles. Instead
we use E = 30–100 MPa. We include surface tension effects
as a bridging force Fσ between neighboring particles on the

surface of the suspension plug. Initially, all surface particles
are densely packed together and experience a nonzero capillary
bridging force. As impact proceeds and distances between
particles grow, this capillary bridging force vanishes once
the separation s exceeds a critical value sc. The simulation
uses Fσ = 2πσrpα/(1 + c1ŝ + c2ŝ

2)n, where σ ≈ 70 mN/m
is the surface tension of the air-water surface, c1 ≈ 1.05 and

c2 ≈ 2.5 and ŝ = s/[2rp

√
π (

√
3/2 − 5/6)]. This expression

has the phenomenological form proposed by Herminghaus
et al. [29] to describe a static, axisymmetric capillary bridge
between two particles. Since impact occurs at large particle-
based Weber number, where particle inertia is important, we
expect α and sc values to differ considerably from the static
limit values. We therefore picked α and sc values to reproduce
the splashing onset at high St where we recover the onset at
Wep ≈ 14 for one set of experimental observations (α = 2.9
and sc = 0.3rp). The parameter values are then left fixed for
other Wep values. In addition, implementing Fσ requires that
we accurately flag the surface particles. We do so via a surface
detection scheme that first creates a smoothed density field,
then calculates the gradient of the density at the center of each
particle. When the density gradient exceeds a cutoff value, the
particle is flagged as a surface particle.

To simulate an impact, we start with a collection of
elastic spheres in random close packing and prescribe uniform
downward speed U0 for all the particles. Upon collision
with a rigid wall, we assume that the surface particles are
weakly interacting with the wall (aside from facilitating elastic
compression). We model this assumption with a modified
effective viscosity at the wall βμ, where β is set to a value
between 0 and 1. The weak lubrication interaction with the
wall is then characterized by a wall-based Stokes number
Stw = 2

9ρprpU/(βμ), and the ratio Stw/St controls the ratio
of lubrication interaction strengths between the bulk and the
wall. As the impact proceeds, the suspension may flatten and
expands radially, creating new surfaces.

The three-dimensional simulations in Fig. 2 were per-
formed for the infinite particle-based Weber number limit,
where the presumable role of the interstitial liquid, including
confinement due to surface tension, is no longer significant. In
this limit, the drop is simulated as an aggregate of dry grains
experiencing inelastic, frictionless collisions [30,31] which are
characterized by a constant coefficient of restitution of 0.95.

IV. RESULTS

A. Splashing onset

Similar to [17], we defined a splashing event as the ejection
of one or more particles from the suspension droplet. We
determined the splashing threshold for each specific particle-
liquid combination by increasing the impact speed step by step,
and repeating each impact speed, depending on the experiment,
3–10 times. For each impact speed, we counted the number of
observed splashes NS and divided by the number of repeats
of the experiment N , with which we defined the splashing
probability NS/N . Figure 4 shows the splashing onsets for the
138-μm ZrO2 particles (P2) for different suspending liquids.
We only included data where we were able to find the complete
transition from NS/N = 0 to NS/N = 1.
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FIG. 4. The splashing onsets for rp = 138-μm ZrO2 particles
at different liquid viscosities. All liquids are glycerol–water mix-
tures, ranging from 0 to 85 wt% glycerol, except the 20 mPa s
solution (light blue), which is a silicone oil. Data for μ = 1 mPa s
from [17].

Clearly, the splashing onset velocity increases with in-
creasing viscosity, although there is no significant difference
between the 1 mPa s and 2 mPa s solvent viscosity. The only
exception is the silicone oil (viscosity 20 mPa s), which has
a splashing onset velocity comparable to that of water, and
significantly lower than the 5 mPa s glycerol–water mixture.
The reason for this is the lower surface tension of the silicone
oil (approximately a factor 3 difference), which decreases the
splashing onset velocity.

Each line in Fig. 4 represents a splashing onset velocity
U ∗ with an associated uncertainty. The orange data in Fig. 5
correspond to the data in Fig. 4, showing the dependence of
the splashing onset speed on the viscosity of the suspending
liquid. We have added data for the larger particles (gray) and
the smaller glass particles (blue), which demonstrates that
particles with more mass are less sensitive to the increase
in viscosity. We have not included data with silicone oils in
Fig. 5 to show only the influence of viscosity, particle size, and
particle density.

We can capture both the influence of surface tension as well
as the influence of viscosity by plotting Wep [17] versus St.
All our data for the splashing onset in Fig. 6, which includes
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FIG. 5. Splashing onset speed U ∗ as a function of viscosity μ,
for the two different sizes of ZrO2 particles (orange, gray) and the
glass particles (blue). All data are for glycerol–water mixtures, giving
only small variations in surface tension. Data for μ = 1 mPa s
from [17].
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FIG. 6. Splashing state diagram with the particle-based Weber
number and the Stokes number. Data delineate the transition. Error
bars give the width of the transition region (see main text). The
horizontal dotted line represents the asymptotic value Wep ≈ 14
for St → ∞ from [17]. The experiments where we have observed
bouncing motion are indicated with black triangles. Note that the
bouncing data extend to St < 1.0, and the full range is plotted in
Fig. 8.

glycerol–water mixtures and silicone oils, falls roughly on
a single master curve, showing that indeed Wep and St are
the relevant parameters determining the splashing onset for
our suspensions. The black data in this figure correspond to
the data from Peters et al. [17] which all are suspensions in
demineralized water, with 76-, 107-, 175-, 249-, and 359-μm
glass, and 78-, 138-, and 362-μm ZrO2 particles. Note that we
have determined the splashing onset for each particle-liquid
combination by determining the maximum speed at which we
never observe a splash and the minimum speed at which we
always observe a splash. This results in diagonal error bars,
because varying the impact velocity changes both Wep and St.

Figure 6 shows a limiting case represented by the horizontal
dashed line, for St → ∞, where the splashing onset becomes
independent of the Stokes number and can be described
solely by the threshold value Wep ≈ 14. The reason for this
limit is that for high enough Stokes number (St � 100),
changes in the effective coefficient of restitution due to viscous
effects become small enough to approximate it as a constant
value [22]. We speculate that there exists a second limit for
Wep → ∞, where the splashing can be suppressed by viscous
effects alone, without the need of surface tension, although our
current experimental results are not conclusive on this point.

B. Bouncing motion

For suspensions droplets with high liquid viscosities we
observed bouncing motion in both the experiments and the
simulations. This is a surprising result, because increasing
the viscosity of the liquid increases the dissipation, while a
rebound requires the storage of energy through deformation.
Comparing our findings to the rebound of pure liquid droplets,
we find a clear difference in the Weber number regime where
rebounds are observed. In pure liquid droplets, rebounds are
typically observed for intermediate Weber numbers (0.2 �
We � 60) [32–34]. Upon impact, the droplets need to have
enough inertia to appreciably deform the droplet, but surface
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FIG. 7. Estimated potential energy of a bouncing droplet
(362-μm ZrO2 in 1055 mPa s silicone oil). For reference, the
horizontal dotted line gives the theoretical surface energy of a silicone
oil sphere with radius rd .

tension still needs to be strong enough to prevent the droplet
from breaking up and bring it back toward a spherical shape.

The bounces we observed in the suspension droplets all
occurred at very high (particle-based) Weber numbers, 100 �
Wep � 2000 [35]. We also only see very little deformation of
the droplets, which suggests that most of the kinetic energy
at impact is dissipated due to the viscous liquid and surface
tension does not play an important role in the rebound. We can
quantify this by estimating the total stored energy needed for
the rebound, and calculating the surface area associated with
a surface energy that equals the stored energy.

Figure 7 shows the potential energy of a droplet during
a bounce. We estimate the change in potential energy by
determining the two-dimensional center of mass in the high-
speed images and get the height h as a function of time,
which with the known mass gives the potential energy Ep ≈
4/3πr3

d [φρp + (1 − φ)ρl]gh, with rd the droplet radius, ρl

the liquid density, and g the gravitational acceleration. For
the specific case shown here, we found a maximum potential
energy of about 2 μJ. In order to understand which mechanism
is able to store this amount of energy during the impact, we
compare this to a change in surface area that would store an
equivalent amount of surface energy, like the mechanism that
is responsible for bouncing pure liquid droplets. The dotted
line in Fig. 7 gives the surface energy of a spherical droplet of
the solvent used in this suspension. This shows that in order
to store enough energy for the observed bounce, an excess of
surface area needs to be created during the impact of the order
of the area of the droplet itself. This is very unlikely since
no appreciable deformation of the suspension droplets can be
seen in the high-speed images (see inset of Fig. 7). In addition,
such large deformations would be largely dissipated by the
viscosity of the liquid. We therefore expect the energy to be
stored in elastic deformation of the particles in the suspension.

The analysis above was done for a droplet which during the
bounce completely detaches from the surface. If we take a less
strict approach and define a bouncing drop by any upward
motion after the impact, we get a better view of how the
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sim ( Stw/St = )
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FIG. 8. Ratio of stored elastic energy and kinetic energy as a
function of the Stokes number, for different viscosities and particle
sizes. The error bars represent the standard deviation of repeated
experiments, with 3–11 repetitions per data point. Two sets of
simulation data are shown, for two different values of wall drag.

viscosity is influencing the probability to find a bouncing
droplet. This is shown in Fig. 8, where we plot the ratio
of the kinetic energy over the maximum potential energy
(Ep/Ek = (gh)/(U 2/2)) as a function of the Stokes number.
To show which experiments were performed with the same
particle-liquid combination, we color-coded and identified
them with a number that is independent of impact speed, i.e.,
St/U . Although the fluctuations in experimental outcomes are
large, as the error bars indicate, there is a significant increase
in restored energy towards lower values of the Stokes number.

A possible explanation for the observations above would
be that the bouncing results from elastic energy that is stored
in a jammed network of particles that are in contact. In the
case of high viscosity these networks might be stabilized,
while at lower viscosity this network would fall apart like
it would for the impact of a dry granular droplet. To test this
idea we performed numerical simulations of the impact of a
two-dimensional suspension droplet. Figure 9 shows snapshots
of the numerical simulation for three different values of the
Stokes number. In all three cases the Weber number is infinite,
such that we can neglect any influence of surface tension. Time
and velocity are made dimensionless with the typical time
t0 = rp/U0 and impact speed U0, respectively. Note that the
color scale is clipped at 0.1U0, to emphasize the velocities after
impact. At the lowest Stokes number St = 0.25 we observe a
clear bounce at t/t0 = 2.5. This is in contrast with St = 2,
where all motion is dissipated after impact. At even higher
Stokes numbers, the droplet is fragmentized.

In addition to the bounce at low Stokes numbers, we also
observed a fair amount of rotation in the droplet [Fig. 9(c)].
This rotation, as expected, depends on the initial orientation of
the droplet on the approach to the substrate. This rotation adds
to the total restored energy, but was not taken into account in the
experimental data (Figs. 7 and 8) because we had no accurate
method to determine this contribution. Therefore, to compare
our simulation results to the experimental data, we calculated
the restored energy using the vertical velocity of the center
of mass of the suspension droplet after impact. In Fig. 8 we
compare the restored energy as calculated in the simulations to
the experimental results and find good agreement for St � 1.5.

V. DISCUSSION AND CONCLUSIONS

Using a wide range of liquid viscosities we experimentally
determined the influence of the Stokes number on the splashing
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FIG. 9. Snapshots from the numerical simulation of two-dimensional suspension droplets at different Stokes numbers (all at infinite Weber
number; only the suspended particles are rendered, and the liquid is not shown). Time after impact increases from top to bottom with t = 0 the
moment of impact. Colors indicate the vertical velocity component of individual particles. St = 0.25 shows a bounce, along with a significant
amount of rotation.

onset of dense suspensions. We see a significant departure from
the inviscid limit at St � 50, where the particle-based Weber
number at the splashing onset becomes larger than 14 within
error bars. At the lowest Stokes numbers where we were able
to observe a splashing onset, we find an increase of about
two orders of magnitude of Wep compared to the inviscid
limit. The steep increase of the splashing onset is suggestive
of a diverging behavior, although our data are currently not
conclusive at this point.

A striking effect for very small values of the Stokes number
is the bouncing of the suspension droplets. Because a higher
viscosity is typically associated with an increase of dissipation,
it is surprising that suspensions with a higher solvent viscosity
are more likely to bounce than their inviscid counterparts. We
quantified this behavior and observed a clear trend of increased
stored energy relative to the initial energy with decreasing
Stokes number. Our simulations show the same trend, although
quantitatively there is a difference in the Stokes numbers at
which the bouncing motion becomes significant. A possible
explanation for the dependence of the bouncing on the Stokes
number could be found by comparing the pressure induced by
the impact to the pressure needed to generate a substantial
flow of liquid through the densely packed suspension. In
the Appendix we outline such an argument by treating the

suspension as a porous medium and using the Kozeny-
Carman relation to estimate the flow resulting from a pressure
gradient.

Finally, we add a note about cavitation. The separation of
the particles from the bottom substrate during a bouncing event
will involve a significant drop in pressure due to the lubricating
flow. Especially because this happens at high viscosities, this
may result in cavitation [36,37]. Although we cannot exclude
that cavitation bubbles are formed during rebound events, we
have not observed any signature of cavitation. This would be
an interesting path for further research, as cavitation could
possibly affect the bounce strength. Cavitation might also
be a source for the reduced lubrication interactions with the
impacted wall.
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APPENDIX: STOKES NUMBER DEPENDENCE
OF BOUNCING ONSET

Here we provide a possible argument for the Stokes number
dependence on the bouncing we observe in Fig. 8. We treat
the suspension as a porous media such that we can use the
Kozeny-Carman relation for spherical particles with packing
fraction φ to relate the liquid flow speed ul to a pressure
difference �P over a length scale L:

�P

L
= 45μφ2ul

r2
p(1 − φ)3

. (A1)

In our droplet impact problem, we may estimate the pressure
from the momentum of a droplet rd mU ≈ 4

3πr3
dρU (assuming

a spherical droplet with radius rd and average density ρ), the
impact time scale τ , and the area A ∼ πr2

d . Approximating the
length scale L as rd , and neglecting numerical values of O(1)
gives

�P

L
∼ ρ

U

τ
. (A2)

We expect the granular packing to lose its stability if the
interior liquid is displaced over a typical distance comparable
to the particle size rp during the short impact time τ . This sets
the velocity ul ∼ rp/τ . The condition for bouncing would be
if the pressure due to the impact is too small to generate a
velocity ul . This gives

ρ
U

τ
� 45μφ2

rp(1 − φ)3τ
, (A3)

which can be rewritten as

St = 2

9

ρrpU

μ
� 10φ2

(1 − φ)3
, (A4)

and predicts a dependence purely on the Stokes number. Note
that the density in (A4) is the average density of the droplet
and not the density of the individual particles, which would
introduce a correction of O(1). Using φ ≈ 0.6 in (A4) predicts
an upper limit St ∼ 56, which is clearly much larger than what
we observe experimentally. A more detailed analysis of the
flow and stability of the granular packing might resolve this,
but is outside the scope of the current study.
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